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FRAGMENTATION ANALYSIS - FUNDAMENTAL PROCESSES

INTRODUCTION

In the study of rock fragmentation there are two fundamental problem
areas which can be investigated. These zre (1) investigation of the
conditions under which fragmentation occurs and (2) investigation of the
results of fragmenting processes.

The first of these problem areas is where the greatest effort has
been and is being expended. Most of this work, however, should be cate-
gorized as studies of rock failure and/or fracture rather than rock frag-
mentation. The significance of rock fragmentation is emphasized by
various efforts to relate failure mechanisms to the strength of rock.

The second problem area is justifiable from an operational viewpoint.

Rock excavation involves fragmentation processes, such as drilling,
blasting, and mechanical excavation. Thus, because the nature of the
product of a fragmentation process is a function of the process itself,
and in turn influences the selection of subsequent processes such ag
further fragmenting, handling, and transporting the rock, it is important
that the nature of fragmentation products be known.

Intuitively, a relationship should exist between a product size
distribution and the energy input from the nature of the fragmenting
process and the rock properties. Unfortunately, no such relationship
has been defined. This then was the purpose o) this investigation.

Specifically, the objective of this investigation was to determine
the relationship between energy input and the size distribution resulting
from a single elementary fragmenting event. The actual investigation was
conducted primarily to obtain the value of the parameters that define
the strength of the material and the process and to relate the strength
parameters with the mechanical properties of the material.

ACKNOWLEDGMENTS

The authors are gre.ily indebted to Walter G. Krawza and Richard L.
Fischer for their help in equipment calibration by using high-speed
photography; Sathit Tandanand, A. Aly Selim, and Bruce D. Hanson for
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his help in data analysis. :
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TECHNICAL REPORT SUMMARY

The main results of this project were as follows: (1) The size dis-
tributions of rock fragments resulting from a single elementary fragmenta-
tion event (comminution of a given size rock) was obtained. (2) This dis-
tribution data was used to determine the elements of the breakage matrix,
which relates the input size distribution to the output size distribution.
(3) A power law relationship between specific crushing energy (or input
energy) and product size was developed.

Three types of rocks were tested in two types of comminution events--
drop tests and impact pendulum tests. The series of drop tests were con-
sidered to be preliminary tests to the main series of impact pendulum tests.
The purpose of these drop tests were twofold--to provide an alternate
gsource of comminution and to evaluate any possible effect of loading rate
on breakage. The loading rate had no apparent effect. Composite normal
distributions were used to fit the fragment distribution data from the
drop tests.

The impact pendulum tests were of the most interest. It was found
possible to measure to a reasonable accuracy the velocities of the moving
parts before and after impact so that specific crushing energy could be
calculated. A number of different distributions were fitted to the sieve
data (resultant fragment distributions) and it was found that the normal
distribution provided the best fit.

From the distribution data, the breakage, matrix, which has elements
expressing the probabilities of decreasing from one size fragment to a
smaller one, was determined. The relationship oif input (feed) distribu-
tion to output Sproduc%) distrikution was found, under certain assumptions,
to be given by p = B' f, yhere p is the product vector, B' is the simpli-
fied breakage matrix and f is the feed vector.

Relationships between specific crushing energy and average fragment
size were developed for the impact pendulum tests. For the three rock
types tested, one such relationship was a power law function of the form

b
E/vo = alu )
where
E/V_ = evecific crushing energy,
a,g = constants related to the breakage process and the rock type,
and - u = average fragment size.

An alternate relationship between specific crushing energy and average
fragment size is the Charles' law formulation.

BV, = K [1xe ™0 - 10 "7,
where
E/V_ = specific crushing energy,
K,g = constants related to the breakage process and the rock type,
X1 = initial specimen sieve size,
and X2 = average product sieve size.

Values of a,b and K,n were determined from experimental data on irregular
and disc specimens of Wausau quartzite, anorthosite, and Felch marble.




EXPERIMENTAL PROGRAM

Plan of Work

" To simulate a single event fragmentation process that is similar
to a real fragmentation process such as occurs with a crusher, it was 3
decided to use random-shaped specimens having a single given initial
sleve size. Disc~shaped specimens that were relatively defect-free were
also used for greater homogeneity of breakage with fewer specimens.
Also the breakage results of the disc-shaped specimens could be compared
with the breakage results of the random-shaped specimens. This compari-
son was essential because it shows the two extremes of brittle fracture
(see also (11)). :

A preliminary experiment (see DATA ANALYSIS section) was designed
to determine the total number of tests required to achieve average
values representative of sample populations. Another test series (see
DATA ANALYSIS section) was designed to study the effect of specimen size -a
and shape for the size range tested in this test program. .

Drop test equipment was initially used to provide some of the data §
necessary to achieve the objectives of this test program. It was known -
that the drop test data would not account for the energy dissipated into s

the impact plate, the kinetic energy utilized in scattering broken frag-
ments, heat, or acoustic energy. Therefore a low velocity impact pendu-
lum was later designed to improve on the drop tests.

i

For the impact pendulum tests, (see DATA ANALYSIS section) most of
the excessive energy available is utilized by the moving parts of the
test apparatus and is accounted for by (1) determining the velocity of the
impact pendulum, first piston, specimen, second piston, and second pen-
dulum, and (2) accounting for heat, vibration, acoustic, and friction
energy by a calibration (no specimen) test procedure.

Drop Test Apparatus

A drop test apparatus was fabricated and installed as shown in
figure 1. To minimize secondary breakage (multiple comminution of some
fragments), the inside of this chamber was lined with rfoam and polyeth-
ylene sheet. The specimen was placed on top of trap doors in a platform
and hoisted to the desired height. ' As soon 'as the platform reached a
specified height, the specimen was discharged by a mechanical release
Pin attached to the trapdoor. Three drop heights of 25, 30, and 35 ft
were selected to provide impact velocities of 40.1, 43.9, and 47.4 ft/sec
and impact energies of approximately . 62.5; 75.0, and 87.5 ft-1b for a ]
typical 2.5 1b specimen., The broken material was retained in a wooden ] 4
impact chamber and later was swept, bagged, labelled, and sieved manually, #
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One huudrcd and eighty specimens (ninety of Wausau quartzite and
ninety of anorthosite) were then fragmented in the major test series
for these drop tests. Thirty specimens of each rock type were dropped
from heights of 25, 30, and 35 ft. The fragments from each specimen
were then sieved to determine composite size distribution of fragments
in each sieve class.

Impact Pendulum Test Apparatus

A low velority impact pendulum (Fig. 2) was constructed to provide
higher energy for rock fragmentation and to investigate the effect of
varying input energy on size distribution of broken material. It mainly
consisted of an impact pendulum (162.5 1b), first piston (38.9 1b),
second piston (41.5 1b), and second pendulum (269.0 1b). The pistons
were supported on two sets of roller bearings. The parts of the pistons
were enclosed in the impact chamber. The test specimens were suspended
by a string from the ceiling of this chamber to rest between two piston
heads (platens). :

The test procedure consisted of (1) placing a specimen enclosed in
a plastic bag between the platens (the bag overlaps the platens), (2)
releasing the impact pendulum, (3) recording the horizontal distance the
rebound pendulum has travelled, (4) arresting the motion of both pendulums
after impact and travel measurement have taken place, (5) recording the
timer reading.

Test Specimens

Rocks of potential use in the present investigation may be such that
their constituents and properties vary considerably from one specimen to
another. To minimize such variationms, three monomineralic rocks - Wausau
quartzite, anorthosite, and Felch marble were selected. The minerals that
these rocks are composed of represent a large proportion of rock forming
minerals found in tunneling and other excavation projects.

Irregular specimens ranging in size from 3 in to 3.5 in were acquired
from muck piles of quarry blasts. The specimens which did not meet visual
inspection standards for uniformity of mineral composition and absence of
macroscopic flaws were rejected. Selected specimens were washed, dried,
and weighed.

In order to determine the physical properties of these rocks, a
block of each rock type measuring 18 by 18 by 18 in was acquired, from
which 10 specimens were cut. These physical properties are presented in
Table 1. Disc specimens (2 in diameter x 1 in thick) were also prepared
from these blocks by cutting and coring. Again badly flawed specimens
were rejected.
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TABLE 1. - Physical properties of Wausau quartzite,

‘anorthosite, and Felch marble

S Sttt

Rock type

Property Wausau Feich H
quartzite Anorthosite marble <

Compressive strength........MN/m2 285.7 221, 172.50
ccccccccocpsi 41,437- 32,053- 25,0190 i
Tensile strengthe....e..... .M¥/m? 5.12 8.97 6.78 i
...l...l....llpsi 742. 1301' 983. , ‘:

Shore hardnesS.ceeesssssssssassss 111.6 91.7 65.1

Pulse velocity.eeesesssesss m/sec
.....II.I..IIft/seC

5130.
16,831.

6866.
22,526.

s

6686.
21,936.

Bar velocity.eeessseeseesss m/seC 4679. 5,742, 5,952,
tevesessensssssft/sec | 15,351, 18,839, 19,528,
Torsional velocity..........m/sec 3383. 3,396, 3,677, :
o vveeeseoftfsec | 11,099. 11,142, 12,064, ¢
Static Young's modulus......M¥/m? | 7.249x10" 4.085x10% | 4.318x10" :
rvveees.psi | 10.51x10% | 5.925x10° 6.263x10° ;
Dynamic Young's modulusk....MN/m? 5.74x10% | 8.971x10% 10.35x10%
vee...psi | 8.33x108 | 13.01x10° 15.01x106
Dynamic shear modulust*.....MN/m? 3.000x10% | 3.115x10" 3.95x10"
veeee..psi | 4.351x108 | 4.518x10° 5.73x108

Poisson's ratio***, . .eeesecess .251 .310 . 268 i
Density.eeeseeseseesenseenssglom 2.649 2.699 2.899 !
PP 1171 5 165.4 168.5 181.0 ;

* - Calculated from bar velocity

%% - Calculated from torsional velocity

*k% - Derived from ratio of longitudinal pulse velocity to longitudinal

bar velocity
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Wausau quartzite is a Precambrian metamorphic rock exposed in the
Rib Hill Mountains southwest of Wausau, Wisconsin, and it is commercially
known as Wausau quartzite, It consists of 98.2 percent quartzite, 0.5
percent coarse amphibole, 0.4 percent fine amphibole, and 0.4 percent
iron oxide, and 0.1 percent feldspar. The impurities are scattered
throughout the rock at quartz grain boundaries. The quartz crystals
vary in diameter from 3mm to dmm.

Anorthosite is a monomineralic rock intrusion in the Duluth Gabbro
complex nearly 5 miles north of Beaver Bay, Minn. It is coarse grained,
light green in color and consists of more than 95 percent plagioclase.

Felch marble is a dolomite named for a typical development at Felch
Mountain in Dickinson County, Michigen. It is mined from a vein deposit
intrusion in Precambrian sandstone by underground mining. The marble is
white in eolor, cosrge in texture, and has small impurities. In additiomn
to calcium-magnesium carbonate, it contains nearly 25 percent calcium-
magnesium silicate.

Although all three rock types were metamorphic in origin, mono-
mineralic in appearance, crystalline, and similar in texture and grain
size, the shape of samples of Wausau quartzite were frequently different
from the other two rock types. This rock comes in three relatively dis-
tinct shapes--flat, elongated, and equidimensional, whereas anorthosite
and Felch marble were more generally equidimensional in shape. The
Wausau quartzite shapes are probably related to metamorphic and tectonic
activities during the cooling period of the Rib Hill mountain region.

Fabric Analysis

The mapping of both macroscopic cracks and microscopic flaws re-
vealed that all three rock types contained a large number of cracks and
flaws, The distribution was random. The cracks and flaws formed a net-
work, one crack or flaw crossing many others. It was not found possible
to determine the number or size of cracks in any individual specimen.
Figure 3 illustrates problems associated with crack density or crack
propagation theories of rock fragmentation. This photograph is typical
of rock specimens used in this investigation. Macroscopic cracks are
few in number and very little is known about their definite origin,
while microscopic flaws are numerous and probably associated with grain
boundaries.

It seems obvious from this photograph that the effects of macro-
scopic cracks are more significant than the effects of microscopic flaws
on certain rock properties. This is only a qualitative conjecture
because it is not possible to verify or quantify this statement with
‘experimental evidence. In certain cases, macroscopic cracks are quite
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thin and their direction is irregular due to joining or intersection of
other cracks. If there are microscopic flaws beneath the surface, their
effect i tmknown. The direction of the crack propagation is not related
to the direction ¢i the load. 'so, it is not possible to determine

the true surface area of an ir 1lar fracture path. Thus it was con-
cluded that it was not feasible .o determine the quantitative effect of
macroscopic cracks or microscopic flaws in this rock fragmentation project
or to include such an effect in the experimental design.
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Fragment Distributions

A number of both empirical and theoretical equations have been used
to describe the size distribution of broken material. A brief account of
the major equations is given below. The data is usually expressed as the
cumulative fraction or cumulative percentage by weight under size, Y,

(o: over size 1 = Y = Y') in relation to size x.

Three of the common equations used are as follows:

(1) Gates - Gaudin - Schuhmann (8, 6, 15):

X,
Y= 1)
where Y = cumulative fraction finer than size x,
m = distribution modulus referring to the spread of the distribution,
i.e., to theﬁalope of the line on log-log paper,
k = size modulus4/,

,2/Schuhmann (15) expressed the size distribution of broken material by

defining an extrapolated intercept from the linear part (fines) of the
cumulative curve, The extrapolation of the linear portion of the-curve
to the 100 percent passing ordinate l~fines the 100 percent size modulus
k. This method of expressing the product size has been used by many
investigators. (Similarly, an 80 percent modulus defined as the same
line extrapolated to the 80 percent passing ordinate has also been used.)

(2) Rosin -~ Rammler (14):
=1 - exp(bxn) (2)

where Y = cumulative fraction finer than size X,
b and n are similar to the constants m and 1/k"™ in equation 1,

(3) Gaudin - Meloy (7):

=1-(1-3" (3)
X
o .
where Y = cumulative fraction finer than size x,
X, = 100 percent passing size, and
r] = parameter related to the mean spacing of the flaws.




FIGURE 3. - Typical phatograph of macroscopic and microscopic flaws in
Wausau quartzite specimen using dye penetrant
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Gaudin and Meloy suggested that their equation describes the distri-
bution curve in the coarse range while the Gates - Gaudin -~ Schumann and
Rosin - Rammler equations describe the distribution curve in the fine
rvange. Thus an overall satisfactory curve fit would require the combina-
tion of these two equations. Gaudin and Meloy derived their equation by
using probability theory.

Bergstrom (lA) suggested that the equation

Y=[1-q@-33"2% *)
: =,
combines the fine and coarse size curve fitting capabilities of equations
1 and 2. This equation is then on extension of equation 3. Here

q; = constant for improved curve fit,
x, = 100 percent passing size, and
r, = paramcter related to the mean spacing of the flaws.

Harris (10) modified the Bergstrom equation 4 by inserting still
another exponent, as follows:

=1-{1-[1-EI°TH® (5)
o .
He claimed no physical basis for the insertion of q; in equation 5. He

merely inserted this term for the sake of increased curve fitting flexibility.
It is supposedly feasible to determine the values of r; and q; or of s, r3,
and q, simultaneously by using graphical or computational methods. However,:

these constants cannot be related directly to physical properties of the
material or to the type of test.

Gilvarry (9) derived the following theoretical equation
=1 - L) = B2 o553
L-exp [-6) - 2 - @) ] (6)

based on the premise that fracture is caused by stress activated flaws
randomly distributed in the volume, in fracture surfaces, and in the edges
produced by fracture surfaces. The parameters in equation 6 are defined
as follows:

Y = cumulative fraction finer than size x,

X ' mean linear dimension of a fragment,

k = constant related to the mean spacing of edge flaws with respect
to x,

j = constant related to mean spacing of surface flaws with respect
to x, and

i = constant related to mean spacing of volume flaws with respect

to x.
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For small values of x, the higher order terms drop from this equation !
and it reduces to :

Y=1-e><p[-%:-] 7

This expression is equivalent to the Rcoin-Ramuler equation (2) for n = 1. i

g% When x becomes small in equation 7, the dominant term ofX the series
expansion of the exporential becomes 1 so that

y _X
- Ve, (8)

ég This result is the same as equation 1 for the case m = 1.

s
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Klimpell and Austin (12) verified equations 1-3 by using statistical
ia theory to describe the fragment sizes obtained in simple fracture of
brittle solids producing large particles.

iy

Epstein (5) constructed a statistical model for the breakage mechanism
and the breakage process based on the theory of probability. He found that
under certain conditions it can be proved that the distribution of broken

bl e S i S e L
[
.

B material is asymptotically log-normal.
- f From the literature cited above, it was concluded that tiie majority
: ii of investigators have used various forms or limiting cases of the following
E } functions:
] [1 The exponential distribution--

g 1

i
E Y=1-exp (-\x), (%)

E the two parameter Weibull distribution—-

. Y=1- exp (—x/o)a, (10)

[J the log-normal distribution——

i Y = fx (1/B xV21) exp [~ (log x - log a1)2/2B2]4dx, and (11)

1; the power fuzction——

[ Y = ax’ (12) i

_ where Y is the cumulative fraction finer than size x, and where Aj a,0;
i a),B; a,b are parameters of the four functions respectively, i
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Two other distributions used in statistics were added to the list
of the above four functions. These are as follows:

the two parameter log-Weibull distribution--
Y=1=-exp {~ (exp x)/e)B}, (13) ;
and the normal distribution--
Y= 5 (1o V2r) exp {~ (x ~ u1)%/20%} dx (14)
where B,0; y;,0 are ;arameters of the’two functions respectively.

It was not feasible to select any single equation from equations
9-14 which describes all the size distributions of broken material that
were found in this investigation. For this reason, it was decided to us~
a linear regression compucer program incr -porating the six equations 9-14
and to determine the coeclficients of corielaticn in all six cases (see
DATA ANALYSIS section). :

For primary breakage, the cumulative percentage of weight retained
(or passing) plotted against sieve size opening on a log-log grid or log
normal grid or on other special grids frequently gives a straight line
over u large section of the plot. In the majority of cases the overall
curve consists of a line with a slope in the fine range which is different
from and usually less than unity, while in the coarse range there is a
curve or another line with a slope usually higher than unity. In other
words, the distribution plot can be separated into the plots of two dis-
tributions represented by two separate equations, one for the fine range
and another for the coarse range.

There is nu evidence to support the hypothesis that the same fracture
patterns exist throughout all size ranges. There is also no evidence to
support the hypothesis that the change in fracture pattern is exclusively
related to a change in the slope of the distribution curve. Irregularities
encountered in the slope may be ~elated to such things as plastic deforma-
tion at contact points (where high stress concentration occurz), test
method, specimen geometry, and secondary breakage.

Energy Relationships in Fragmentation

As mentioned in the Fragment Distributions section, the straight line
representing a size distribution on spacial graph paper (e.g., a log-log
plot) and passing through some of the data points does not go through all
the points of both the coarse and fine 1egion. Thus there is no real
Justification for expressing the 100 perc:ent size modulus k as an extra-—
polated point based on this line. Consequeuily there is no clear relation-
ship between this modulus and some other measure of product distribution.

13
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Instead of using a size modulug, a dimensionless mean product size
is used in this report. The following definition- was adopted:

n= §2-= mean product size (dimensionless)
£ : i

n 3/

where: xp = I fi X, = mean product size= (in),

éjThe summation is actually from i = 1 to «; however for the smaller sizes :
the f,x, terms are small and can be neglected. 3

i”i

x; = average sieve size (mid-point of sieve class) (in), {
weight in sieve class '
~ total weight of specimen ’ 1
x,. = average feed size i b
f . ;
= iheight of specimen = (in). E
density %

A,

2 The above definition of x,. is based on an assumed cubical shape because
the specimens tended to be blocky. Other shapes, such as spheres, could
also be used and would yield different factors in front of th~ cube -‘oot.

b5y

Bergstrom (1) conducted a series of tests at loading rates of 102, 103,
10%, and 10°® 1bs/min. He concluded that the rate of loading had little
effect on the energy - product relationship for glass spheres. However, he
reported an increase in the energy required for fracture as the rate of
loading was increased. He also investigated the magnitude and effect of
% kinetic energy on secondary brezkage of glass spheres jacketed in steel and
i gelatin chambers. He noticed a significant effect of kinetic energy on
b product size distribution for two cases. He also concluded that the test 3
environment, whether a steel crushing chamber or gelatin chamber, did not
1 affect the average energy requirement for fracture of spheres of equal 5

e e
i L

E
i diameter. ]
] : 3 :
| il In 1867, Rittinger postulated that the energy required for size re- ' 2
: é* duction of a solid material would be proportional to the new surface area ]
created in fragmentation. Because the new surface is directly proportional ,%

’ ' :

to the square of the new size and directly proportional to the average
number of new particles which in turn is inversely proportional to the
cube of the new size, mathematically Rittinger's hypothesis can be inter- ;

preted as follows: . :

4 ]

AT TR R
fre s ]
e

: E = K(1/xy = 1/x1) (15)

e aked
[ Lo ]
25




Smasa
o
S —

where
E = energy input per unit volunme,
K = constant,
Ko = final size,
and. x) = initial size. &

=11

s |
s

B [%2 [-C ax/x™] = -¢ [Um ® 7 1= 1/m O 11 for n¢ 1, QA7)
X)

it ‘
EH This hypothesis is simple to understand and several investigators
have used it to interpret their experimental data or to improve upon this
13 hypothesis. H
i
In 1885 Kick postulated that equivalent amounts of energy should
- result in equivalent geometrical changes in the size of pieces of solids.
| This resulted in the equation
. E = Cin (Xl /XZ)
§ where
& E = energy per unit volume,
C = constant,
;E X, = final size,
il and x; = initial size.
5 In 1915, Gates (8) pointed out that Kick's hypothesis was at odds with
ig ' rigorous experimental evidence. Ever since, no experimental data has
4 been obtained to dispute this fact or to show that Kick's hypothesis is
i generally applicable to size reduction of rock-like materials.
3 1; What 1is ffequently referred to as Charles' law (4) in the crushing
i and grinding literature (and which includes the above laws as special cases) i
ﬂ } was first proposed by Gilliland (16) as follows: |
L r}
‘. dE = -¢c & (16)
n
3 X
% 13 where dE is increment of energy, x is particle size, dx is increment of
i size, and C and n are constants. The integration of the above equation
{ 1 leads to the following expression:
b

A

= cen (x)/xy) for n = 1.

Thus for n = 1 and 2, equation 17 takes the form of Kick's and Rittinger's
L laws of crushing respectively.

Bond (2) proposed that since neither Kick's nor Rittinger's hypothesis
geemed valid for plant design work, an energy-size reduction relationship
somewhere between the two was more applicable. The fundamental statement
of Bond's mean index equation is derived from equation 16 with n = 1.5

- E = =C ;2 1.5 .5 5
Ix dx/x = K [1/x2 - 1/x1 7] (18)
. 1
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Charles (4) pointed out that for a given cumulative distribution
y = £f(x) or dy = f'(x)dx (19)

where y = percent of weight less than size x, the energy dE required to
reduce a weight, dy, from size X to x is

x
dE = [ [-c ax/x"] gy (20)
. ‘(m
The energy E is then given by
k x ' n
E=f [ (cCcax/x") £'(x)dx S
X, %,

where k is the size modulus (described earlier in this section) and ¢ is
a constant. Charles showed that this reduces to the form

Ee At L

under various assumptions. This is similar to ome of the forms used later
in this repert. '

Oka and Majima (13) analyzed energy requirements in size reduction of
irregular specimens. Their equation is as follows:

6/ _ o -6/8

Ey =Ki 1 ' - X ) (22)

vhere: Ej = total energy required in size reduction from feed size X3 to
product size x,
K3 = constant,
B = constant.

For B = 12 or 6 this equation reduces to the empirical laws of Bond and
Rittinger respectively; i.e., equation 22 is another form of Charles' law.

Intuitively, it is an appealing concept that the amount of energy
utilized in the fragmentation process is proportional to the new surface
area created (Rittinger's hypothesis). However, this concept does not
hold in many cases due to the inherent heterogeneity and anisotropy of
rocks and rock-forming minerals. A certain fraction of this energy is
utilized in creating a network of cracks and flaws in new particles which
were not inherent in the virgin material.

Thus, a summary of the whole situation of "laws" and equations is that
theoretical equations tend to be approximate and essentially no more ac-
curate than empirical equationms.

- 16
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Matrix-Vector Description of Single Event Comminution

In order to explain the results of the fragmentation analysis of this
impact crushing investigation, it is necessary to relate the original sieve
gize of the specimens to the distribution of the various product sieve
sizes obtained. One convenient method of doing this is to use the breakage
matrix and the selection matrix. These relate the input (feed) to the
output (product) and are explained in more detail below. Further details
can be found in Broadbent and Calcott (3).

Let 21,3250 a be a decreasing geometric sieve size sequence with
geometric ratio k, i.e., a4 = kai, with k < 1,

The breakage matrix, B, is defined by

by, by byg o - by, |

byy bPip baz -+ Py

byy b3y b3z - .+ By
B= (b= - - - 5y

b b

b n2 n3 * : ' bnn -

nl

The bij's relate feed fragments of size j to product fragments of
gize i, i.e%v, bi' is that proportion of a fragment between a, , and aj
before breakage which falls between a1 and a; after breakage. '

The upper triangular portion of B (abo-re the diagonal line) has all
zerc elements (i.e., b,, = 0 for j > i) becuuse a fragment cannot increase
in size during comminu%lon.

The selection matrix S is also used in this formulation. This matrix
expresses the probability of selecting a set of size grade fragments.
Thus S is defined as follows:
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wvhere s, is the proportion of the j-th size grade selected for breakage.

3

->
The input (or feed or frequency) vector f is defined as follows:

s
4 where f, is the proportion by weight of the feed fragments between the 'ﬂ
E ¥ (i-1) and i-th grade size. The fraction fn is the last sieve rangc measured. ' '
Consequently fn+1 is the fraction undersize and

f1+f2+".'+fn+fn+l=1' §

: The output (product) vector p. is defined in a similar fashion as follows: ;
o J' ‘;
# " [ Py |
% : p2
> ’ 4
p = s

where p, is the proportion by weight of the output fragments between the
-~ (i-1) and i-th sieve sizes.

I
AN N e R A o S NENT:

Putting these definitions together, it is seen th%t the effect of a
selection and breakage proc.ss on a feed distribution { is represented by

{ pe=Bs+(1-9]1%t g
where BS t is the product selected and broken and (I-S) ¥ is that part of 3

i the feed not selected for breakage. This simplifies to :
‘ ~ = Bf %

in the present case because S is the identity matrix I - all the specimens !
prepaied are selected for comminution, ;

18
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A further simplification of the B matrix is possible in many actual
% fragmentation processes and it was necessary to assume it to be valid
' for the present investigation. Let the matrix B be of such a nature
that fragments of every size are broken in the same way and the product
B depends only on a scale factor. In other words, "scaling” is valid.
i Then, because the sieve sizes have been chosen to be in geometric ratio, E
it is seen that

~ A

i

L

a, = a0t~ Lk<i;4=1,2, vovy n).

In this investigation k = 1/ V2 .

1

| e
WL
RO RTLTG

Then it follows that

4]

bij =b

so that the matrix B is completely determined by its first column and can
be written in the new form: ‘

1-g+1,1 320

| ¥
| =

ERTIERERER S s L

et

[ o ]
J
z

01
ﬁ b, by 0 . . . 0 g
= b3 b2 bl L ] . . [ ] 0 -

B'=| . . . . A withp =3 F (24)

b b .b . .« . b

n n-1 n=2 1-

1
LRI T R 2

where elements along any given down diagonal are all the same.

Writing out the matrix-vector multiplication, the following equations

|

4

are equivalent to the more concise notation of the matrix-vector formula- |

) tion: %

Py = by 1

} Py = byfy + 048y Q
! . 1

= 3

! p,=b £, +b fy+ ..t b £ |

19
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The importance of the simplification of B to B' in this investiga-
tion is that all the non-zero elements of the matrix can be obtained by
simply finding the elements of the first column (or last row).

In order to substantiate the assumption that the more general
breakage matrix B can in fact be simplified as described above, it
would be appropriate to start with the n different sizes of specimens
and to fragment a group of each size to find out if the scaling is in
fact valid. In practice it was found during the first series of drop
tests that it was not possible, within the constraint on the number of
tests that could be carried out, to obtain consistent results of the
different size fragmentation products when more than one initial size
set of irregular specimens was used. Disc specimens were also used and
it appeared that more consistent breakage with fewer specimens could be
obtained. '

Thus one of the objectives of this investigation was to obtain the
first column of the breakage matrix (equation 24). The values of the
b,'s exhibited in appendices Al - AS are the values ultimately obtained.
I% is then assumed that the other columns of B’ can be obtained from the
bi's as shown in equation 24,

20
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s DATA ANALYSIS :
f § L
Drop Tests

Several series of drop tests were carried out to study the effects
Ll of size and shape so as to provide preliminary data for the design of
impact pendulum experiments.

TR RS T ST T R T

gi . The first series of drop tests was designed to investigate the
effects of shape and size on the value of A, the exponential parameter

73 in the exponential distribution:

.s ‘ Y = e—lx

3 During this phase of the investigation, the exponential law was being
used as a base law for the analysis. From this experiment and later

ol drop tests, it was found that the exponential distribution was not a

.- good model.

. As a basls for this preliminary investigation, random shaped speci-
mens were used to simulate the feed vector in which all the specimens

1 have the same initial sieve size. Sixty-four tests were conducted on

i specimens varying between 500 and 1,000 gm to select the nouber of tests
in the final test series.

ij From sieve analysis results and calculated A values, it was concluded
that a minimum of 30 tests would be required for each test situation to

e obtain reproducible results for estimating a composite A. This value of |
it 30 was a compromise between statistical estimation of the variability of
i the mean, and a need to keep the total number of tests down to a reasonable

total. Sequential testing was also considered in order to keep the number
of samples to a minimum; however it was felt that the average sample

i number in a sequential test would have to be interpreted as 30 so that

no savings would be achieved.

e

Data analysis of the first 64 tests also revealed a high scatter in
the value of the distribution parameter A. Therefore, a second test
series was designed to investigate the effect of shape and size on test
results.

To investigate the shape factor in this second test series, the
specimens were divided into three groups based on their geometrical con-
figuration ~ equidimensional, elongated, or flat. To incorporate the ef-
fect of volume, the weight of specimens in each category was varied from
100 to 7,000 gm. All specimens were dropped from a constant height of
35 ft.

Results of the experiments indicated a high scatter in the indi-
vidual values of A. The data also indicated that equidimensional speci-
mens show a lower probability of breakage than do elongated specimens
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Ty which, in turn, show a lower probability of breakage than the flat speci-
{f mens. The larger specimens also showed higher probability of breakage

than the smaller specimens for comparable shapes. These results are
summarized in table 2.

i The values of A for each weight class also increase as the proba-
bility of breakage increases. This is to be expected because 1/X is the
mean of the exponential distribution; i.e., the average size decreases

ii as the probability of breakage increases.
T3 In the final series of drop tests, one hundred and eighty specimens
il (ninety of Wausau quartzite and ninety of anorthosite) were fragmented.

Thirty of each rock type were dropped from heights of 25, 30, and 35 ft.
: The fragments from each specimen that broke were then sieved to obtain
i the weight of fragments of each specimen in each sieve class.

»

v To analyze the sieve data, the cunulative sieve percentages were

1 b i1 obtained and plotted for each specimen that broke - all plots for one

5 drop height being shown on the same graph. It was evident from these
three graphs that the sample-to-sample variation was so great that taking
an average (forming a composite) of all the samples (number of samples =
n < 30) would yield a better description of all the samples and conse-
quently show better the general trend of the fragmentation process.

| | | Consequently the next step taken was to form a composite distribu-
§' L tion by adding the n individual weights together for each sieve class

3 and then finding the percentage and cumulative percentage for each sieve
class. This was carried out for each of the three drop heights (see

3 I T Figs. 4a and 4b).

& | i Another method of forming a composite distribution for each drop
' height is to find the fraction by weight for each individual specimen
for each sieve class and to average these n fractions for each sieve
class.

BRI TR

ATy
i~

; i The first composite distribution described above is equivalent to
i the distribution that would be obtained by breaking all the original
i i size rocks together. This, in effect, simulates a multiple rock single-
l, event crushing process. The second distribution described above is the
statistical distribution that it would be natural to form. Thus both
digtributions are logical from different points of view. As it turns
out, both distributions are very nearly the same, i.e., the overall
percentage in each sieve class is approximately the same for either
- distribution. In this investigation both distributions were calculated,
=t but only the former is shown in the various figures.
H
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TABLE 2, - Experimental data from low impact velocity drop tests

Shape

Specim:n size (small)

Number of
replications
(includes hoth
broken and un-

broken specimens) -

A for average
weight of 800 gm
(approx)

Probability
of breakage

Equidimensional
Elongated
Flat

Equidimensional
Elongated
Flat

47
49
37

0.060
.114
174

0.618
.835
.975

Specimen size (large)

Number of
replications

A for average
weight of 1,600 gm
(approx)

Probability
of breakage

32
27
46

0.054
.089
.116

0.876
.965
1.000

i
i
j
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Figure 4a. Curves fitted to cumulative size distributions of composite

data from drop tests ©O

f irregular Wausau quartzite specimens.

24

B

PR RO R-T NPT e TP T

FTRERUDLS SN g P R

z

i e R S Lo R U S A I AT bR 2 B R B A

[r——




ta l 99.99 I T T i l ‘ ' [ ' l l
ﬁ | 13
i E 99,90 2
i E .
R 99.00 |
- o 98 ,
o
i £ 95
s
% ¢ 90
H g 80 i
= e 70
i o :
{ & 60 !
w 50 :
1 2 40 i
e 30 !
] 3 20 i
) = |
| = 10 Samples in i
5 | Drop composite _
j —C——— 25 ft 15
. 2 S 30 ft 21 i
I —_— - 35 ft 25 9 H
{
4
- o.! I -
i z
: 0.0! | | 1 | | | ] ] ] } |
P 0 0.5 1.0 1.5 20 2.5 3.0 i
H SIZE, inch
,.E |
! i
e 3
. é Figure 4b. Curves fitted to cumulative size distributions of composite ‘
E § \ data from drop tests of irregular anorthosite specimens. i
; 5 ) i
} 25 |




3
.

%
z

atmavy

g

by ER i » &
it
T I Y T e T T Ay 3
2. h
£

[E—"

Vrawecras -

emerenncd

The final step was to statistically analyze and plot these cumula-
tive results to find which distribution fitted best. Three distributions
were used - the power law distribution, the exponential distribution,
and the normal distribution. It turned out that the normal plots had
the best correlatlon coefficlent, but this was not evident until the
following complicscion had been resolved.

The composite set of data points for a given drop height when
plotted on normal paper yielded a set of data points which resembled a
straight line segment and a slowly bending curve (see Figs. 4a and 4b).

Consequently it was decided to separate the sieve data into two
groups - "fine" and "coarse." The cut-off point was selected visually
as approximately 1.05 inches for the anorthositc and 1.25 inches for the
Wausau quartzite. These two groups were then recompiled (renormalized)
separately and each group was plotted separately. Thus where there were
three "dual" segment plots before, there are now six separate sets of
points and lines for each rock type. These are shown in figures 4c, cd,
de, and 4F. These last six linuvs (on nornal paper) were fitted by the
least squares procedure. The correlation coefficlent for each line,
showing goodness of fit, is also shown on each figure.

Note that each curve or straight line in figures 4a-4f was plotted
for a given drop height. This is equivalent to plotting for a given
specific crushing energy because specific crushing energy is proportional
to drop height:

= Wh_
c  (Wpd
specific crushing energy (ft 1b/£e3),
rock density (constant) (1b/ftd),

specimen weight (1b),
drop height (ft).

E = ph

where: E

W
h

Impact Pendulum Test

For each separate impact pendulum test, calculations were made of
the rebound height of the second (rebound) pendulum by two methods. The

rebound heights by the two methods respectively were calculated as follows:

First method:

h=R- "R - (25)
where: h = rebound height (in),
R = length of pendulum wire (from pivot point to center of gravity

of rebound pendulum) (in),
x = measured horizontal travel of rebound pendulum (in).
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Figure 4d.
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Secornd method:

- by
\Y At
V = rebound velocity (ft/sec),
Ay = 1/12 (ft),
width of black shield attached to pendulum,
At = time (sec) for shield to travel 1/12 ft (measured by timer).

where

Calculations from the photoceli/timer indicated inconsistent velocity
values. This was probably caused by fluctuations beyond control in back-
ground lighting which affects the two trigger points that start and stop
the At time interval on the digital counter. Consequently these calcula-
tions were not used in the analysis,

Calibration of Impact Pendulum

It was essential to calibrate the impact pendulum for two reasons,
(1) to determine the energy lost in the system and (2) to check the
alignment of the pistons by verifying for given input energies the re-
peatability of the piston velocities. High-speed photography was used
to determine the relative motions of the first pendulum, first piston,
second piston, and second nendulum with no specimen present. Five high-
speed photographs were mads of these moving parts. It was found that
after impact the latter three parts remaiuncd in contact with each other
and travelled as one unit for a distance of about 1 in, After this, the
second pendulum separated from the two pistons because of the roller
bearing friction on the pistons. The first pendulum approximately stopped
after impact. Since the latter three parts remained in contact with each
other briefly after impact, it was assumed that the velocities of all
three were the same,

In order to calculate the mechanical energy lost, E_ , the following
energy balance relationship is used (see sketch below):

Energy in = Energy out + Energy lost,

W W
Why = 1/2 (2 + %3 v,2 + Wyhy + E
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where

weight of first pendulum,

release height,

weight of first piston,

weight of second piston,

velocity of first and second pistons,

weight of second pendulum,

height to which second pendulum ascends,

energy lost in friction, heat, vibration, etc. with no
specimen between pistons.

=
1S
10 nn

>
=
nnan

Equation (27) can be rewritten as

]
EL1 = Wphy - Wyhy - 1/2 (% + Eg') V22 (28)

The numerical values for the input energy, Wih;, for the calibration
output energy ,1/2 (E§-+ Eé) sz + Wyhy, and for energy lost, ELI’ are given
in Table 3 (see equation 28).

Calculation of Crushing Energy

High-speed photographs of specimen fragmentation runs indicated that
all the moving parts (first pendulum, first piston, specimen, second
pistou, and second pendulum) remain in contact immediately after impact.
When the specimen is held between the two pistons, the motion of the first
pendulum is different than in the calibration calculations (where no speci-
men was present) in that it moves along with the other parts. Thus, to
obtain the crushing energy utilized in breaking the specimen, it was only
essential to determine the velocity of the second pendulum immediately
after impact both with and without a specimen held between the pistons.

The energy balance when the specimen is present (see sketch below) is
given by the following equation:

Energy in = Energy out + Crushing energy + Energy lost,
. W, W , Wg , W
Wihp = 1/2 ('Jg+“)§+—§+_§) V32 + Wyhs +E +E (29)
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TABLE 3. - Energies involved in calibration
for different input energies.

Release Input
height Release EneERy Calibration Energy
: height, output energy lost, E
position T Wih £e-1b ft—lbLl
: (see figure 2) ft-1b ;
. 3 7.0 95, 67. 28, !
c 12.1 164, 122, 42, d
2 16.5 223. 160. 63. .‘
B 21.5 293, 220. 735 ;
1 26.9 365. 271, 93. 1
! A 33.6 455, 355, 101, .
33
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where
1, Wo, W3, Wy, and h) are defined above,

- W_ = weight of specimen,

: V3 = velocity of first and second pistons,

: hs = height to which second pendulum ascends,
Ec = crushing energy,

EL energy lost in friction, heat, vibration, etc. with specimen
2 present.

It is assumed that

EL1 = EL2 .
5/

Hence when equations (27) and (29) are set equal, the following expressionm™

éjNote also that Wyhy = 1/2 Eé-vzz and Wyhg = 1/2 E% V32,

for crushing energy, Ec, is found:

ot AP S 5
Y kg
2] » &

E_ = 1/2 (3% + Eg) Vo2 - 1/2 (Eé— + Eg. + Eg + ﬂé—) Va2 + Wyhy - Wyhe. (30)

The input energy Wihj is the same during both calibration runs and specimen
runs from a given release height; consequently, this parameter does not
affect the value of crushing energy Ec and so does not appear in equation 30.

A computer program was used to calculate the calibration output energy,
and crushing energy, and the specific crushing energy for each specimen
and averages of these for each release height (input energy) and rock type
§oad used in the testing. (See DATA ANALYSIS, Impact Pendulum Test section.)

. =
S e e

7 To facilitate analysis, four digital computer programs were used to
analyze the recorded test data and sieve data obtained from the fragmented
specimens.

Gz

The first program used sieve data to calculate the following: cumula-
tive data for each resultant fragment distribution, the composite distribu-
tion from a number of these individual fragment distributions, and the means
and standard deviations of the individual and composite distributions.

All the sieve data from the 270 fragmented irregular (-3.5 4+ 3.0 in) speci-
mens and the 150 disc (2 in diameter x 1 in) specimens of the three rock 3
7T types were run using this program.
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The second program was used to calculate the rebcund velocity of the
2 rebound pendulum from both a photocell/timer method and a distance measuring
% gi method. (This was discussed in the Impact Pendulum Test Apparatus section.)
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The third computer program was used to calculate the calibration
output energy, the crushing energy, and the specific crushing energy
(crushing energy/speciuen volume) for each specimen and averages of
these for each release height (energy input) and rock type used in the
testing. (The equations for calculating these energies were developed
fn the Experlucatal Progranm sectiuvn.) This data is suwumarized in ap-
pendices Bl - B24,

The fourth program was used to fit various functions to the sieve
data. The six distribution functiuns given in equations 9-14 were used.
The fitted normal distributions are shown in figures 5a, 5b, 5c, 5d, Se,
and 5f. The same method of combining individual tests into a composite
distribution is used as was used to obtain the composite distribution
for the drop tests.

The output from these computer programs was quite extensive and
consequently is not totally reproduced in this report. Instead, a summary
of the most pertinent information is given in appendices Bl - B24 and
Cl - C6-

Included in appendices Bl - B24 are specimen weight, mean product
size, standard deviation of product, specimen output energy (from pen-
dulum output velocity), crushing energy (that portion of the input energy
actually utilized in crushing), specific crushing energy (crushing energy
per volume of specimen), averages of the above parameters, and mean and
standard deviation of the composite fragment data. (Composite data are
obtained by pooling the weights of fragments in given sieve classes from
all the products listed in that particular appendix.)

Because thie specimens, particulaily the irrcgular ones, were of dif-
ferent sizes and weights even though they were of the same sieve size, it
was necessary o compare the mean product size and the product standard
deviation with an original size as follows: The original weight of the
specimen was converted tu volume by dividing by the rock density, and the
cube root of this volume was considered to be the specimen size. Dividing
this value into the values of the mean and standard deviation yielded a
dimensionless mean and standard deviation. These dimensionless versions
of the mean and standard deviation are also given in appendices Bl - B24.
The ddmensionless wean is aleo ueed in sevoeral fijuris.

Included in appendices Cl - C6 are summary data relating to various
functions that were fitted to the cumulative sieve data. The columns
headed A and B give the intercept and slope respectively of the fitted
function in the form where it has been found as a straight line, (e.g.,
R = exp (Ax) becomes y = logR = Ax, so that A =0 and B = M.
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The other two columns show the coefficient of correlation and the
coefficient of determination. The correlation coefficient shows how
well the line fits the transformed data points, and the coefficient of
determination shows how well the fitted function fits the original points.,
Comparison of the various correlation coefficients is usually taken to
indicate the best f£it of those functions considered. The normal func-
tion generally yields the best fit and the power curve or the log Weibull
the second best fit in these appendices.

Inasmuch as the normal was taken to be the best fit, it was desirable
to make a check on the suitability of the normal, so a separate compari-
son between the mean and standard deviation of the product as calculated
from the normal distribution and as calculated from the composite sieve
data (also shown in appendices Bl - B24) was made. Table 4 provides the
data organized for-comparison. Generally the composite mean is slightly
greater than the normal mean, but the composite standard deviation is
less than the normal standard deviatioa. Thus it appears that the normal
is a reasonable fit to the data.

In this investigation, the first attempt at relating specific energy
and mean product size followed along the lines of the work of Bergstrom
(2) or Charles (4), as discussed in the Fragrent Distributions section.
The function used was the following hyperbolic (or power law) function

E/V_ = a/u® 31
where . o
E = energy (ft-1b)
initial specimen volume (£t3),
constants related to the breakage process and the rock type,

<
[

[+
o0
n

o= XP/Xf = dimensionless mean product size,
X_ = mean product sieve size (in),
XE = initial specimen size (in) = V01/3 (V0 in in3).

The mean product size was used rather than the 100 percent modulus
(the curve fitted value of the ratio of the largest product size to the
initial specimen size) because the 100 percent value would have been
between 0.9 and 1.0 in all cases, making it difficult to distinguish
between differing product size results resulting from different input
energies.

The values for a and b were determined by a digital computer least
squares fit of the power law. These values are summarized in a brief
table included in figure 7. Both figures 6 and 7 show the power law
fitted to the data points, figure 6 on rectangular graph paper and figure
7 on log-log paper. The lines in figure 7 show excellent fits to the
data points, particularly in the disc specimen cases. Note that in
figure 7,a is the intercept, i.e., the value of E/Vo when y = 1 (or
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TABLE 4. - Comparison of mean and standard deviation as calculated from

the normal distribution and from composite sieve data

Mean = U Stanqard
Material Release Shape (in.) Deviation = ©
height Normal | Composite (in.)
Normal | Composite

Felch Marble C irregular 2.304 2.264 0.939 0.724
Felch Marble B irregular 1.931 1.958 0.951 0.851
Felch Marble A irregular 1.522 1.612 0.806 0.745
Wausau

quartzite c irregular 2.030 2.052 0.967 0.835
Wausau

quartzite B irregular | 1.631 1.713 0.910 0.838
Wausau -

quartzite A irregular | 1,387 1.476 0.937 0.852
Anorthosite C irregular 2.647 2.474 1.094 0.708
Anorthosite B irregular 2,191 2.198 1.029 0.811
Anorthosite A irregular 1,530 1.640 0.872 0.787
Felch Marble C disc 0.860 0.764 0.573 0.268
Felch Marble 2 disc 0.630 0.666 0.462 0.281
Felch Marble B disc 0.472 0.570 0.390 0.266
Felch Marble 1 disc 0.372 0.492 0.332 0.239
Felch Marble A disc 0.322 0.445 0.307 0.230
Wausau

quartzite C disc 0.700 0.803 0.488 0.283
Wausau

quartzite 2 disc 0.535 0.680 0.447 0.307
Wausau

quartzite B disc 0.397 0.545 0.414 0.267
Wausau

quartzite 1 disc 0.318 0.460 0.319 0.227
Wausau

quartzite A disc 0.166 0.362 0.327 0.211
Anorthosite c disc 0.856 0.864 0.543 0.267
Anorthosite 2 disc 0.662 0.760 0.472 0.302
Anorthosite B disc 0.556 0.634 0.463 0.278
Anorthosite 1 disc 0.420 0.548 0.421 0.280
Anorthosite A disc 0.339 0.463 0.309 0.230
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Figure 7. Logarithmic plots and fitted parameters for power curves.

MEAN PRODUCT SIZE, p (dimensionless)
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X = X_.). Also note that each point in figures 6 and 7 is an average
£Br a given input energy taken from 10 points for the disc specimens
and 30 points for the irregular specimens.

Another attempt at relating specific energy and mean product size
was somewhat similar, but less successful. This approach consisted of
fitting Charles' law (see Background) to the data points. Charles' law

is given by

ey, =k [ " - 1@ ") (32)
where: E = specific energy (ft3),
: VO = volume (ft3),
X2 = mean product sieve size (in), .
X1 = initial product sieve size (in) (3.25 in for irregular speci-

mens and 2.00 in for disc specimens),
K,n = calculated constants related to the breaking process and the
rock type.

One data analysis problem here is that there is no linearizing trans-
formation to which a least squares fit can be made. Consequently, trial
and error calculations were used to find a value of n that gave approxi-
mately constant K values for different (E/V_, X») data points. The re-
sults of these calculations are summarized in table 5.

Note that the power law function and the Charles' law function are
not too dissimilar, so that somewhat similar exponents can be expected,
The main difference between these two functions is the subtractive term
in the latter function.. As pointed out in the Background section, neither
of these functions is really a law, but merely a general empirical form
which may or may not fit a particular breakage process and rock type.

Discussion of Results

An interpretation of the data analysis results is somewhat complicated.

The rock properties shown in table 1 are not all clearly consistent with
each other. It had also been postulated that in the case of the impact
tests perhaps one or more of the parameters of the specific energy versus
product size relationship could be correlated to one or more of these rock
properties. Also it had been postulated that the parameters themselves
might differentiate between rock types as to breakability. Neither postu~
late could be totally proved or disproved.

At .the inception of this project it was planned to use several mono-
mineralic rocks of different strengths. Initially Wausau quartzite and
anorthosite were used and Felch marble was later added as this rock was
expected to be weaker and softer. The eventnal results of a standard
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TABLE 5. - Results of fitting Charles' law to
energy versus mean product size data.

Material Shape

Wausau
Quartztte Irregular

Anorthosite Irregular

Felch Marble Irregular

Wausau
Quartzite

Anorthosite

Felch Marble
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i suite of property tests (table 1) indicated a consistent trend on com-
pariag compressive strength and hardness - Wausau quartzite was strongest
; and hardest, then anorthosite, and Felch marble was weakest and softest.
4 ~ However, tensile strength did not follow the same trend - the low value
4 . was for Wausau quartzite, which seems unlikely. Also the calculated

s dynamic Young's modulus turned out to be lover than the static Young's
modulus for Wausau quartzite, which seems unlikely. 1In retrospect,
perhaps the block from which the Wausau quartzite property test specimens
were prepared contained more flaws than expected. Alternately the anor-
thosite or Felch marble properties might be inaccurate. One way to shed
A TR light on this problem would be to carry out many replications of these

e 1 tegts with other samples of the same material. This was not possible

: * within the limited time, goals, and costs of this project.

The drop test' experiments were performed on irregular (-3.5 + 3.0 in)
specimens with the drop energy level being the only factor varied. The
analysis of the distribution results of these experiments showed an ap-
parent significant effect of the level of energy applied on the size dis-
tribution parameters.

While it was possible to make these observations based on fitting
the drop test data to a negative exponential distribution, it.was ap-
parent that this distribution was not sufficiently accurate for our pur-
poses. One reason for this is that the experimental distribution data
were always bimodal rather than unimodal, as originally assumed. Sub-
sequent analysis of the data showed that the fine material can be fitted
by a separate normal distribution from the normal distribution describing
the major portion of the product.

T Ay
e

b | Certain inconsistencies were observed in the experimental data.

. Neither the mean size nor the standard deviation of the product varied

% in a regular manner with the applied energy. Also the slope of the fitted
lines on the probability plot increased with drop height for the Wausau
quartzite, but did not increase for the anorthosite (see Figs. 4a and 4b).

E © One cause of these inconsistencies, of course, is that not all the energy
4 L goes into breakage. Another cause is the small sample sizes that resulted
? ﬁ from lack of breakage, particularly in the case of the 25 foot drop height.
Ny Additional specimens were not run to replace those specimens that failed

to break, because the impact test was going to replace the drop test.

PreTemmeey

s The first impact pendulum test results were from the fragmentation
sieve data analysis (Figs. 5a, 5b, 5¢, 5d, 5e, and 5f). On comparing

] the appropriate lines on these plots, it can be seen that there was some
E difference in the breakability of the three rock types, but that this
difference was not extremely great.
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3 . The next step was to determine whether any of the parameters of the
0 jg specific energy versus product size relationship might be correlated
E“‘ 2 with any of the rock properties using either the power law relationship

i or the Charles' law relationship. From the brief table of figure 7 for
; the power law and from table 5 for Charles' law, it can be seen that the
i only direct relationship is for the a (or K) values respectively, and
then only for the disc specimens, not the irregular specimens. That is,
, the values of a (or K) decrease directly as compressive strength and

§ hardness decrease, in the order Wausau quartzite, anorthosite, and Felch
marble. If b (or n) were constant this ordering would imply decreasing
e breaksbility. However, b (or u) is increasiug at the sowe time as a
g (or K) is decreasing. Thus no clear pattern evolves. :

It appears that the b (or n) values are more important in assessing
rock breakability than the a (or K) values for the higher specific ]
energics, (Than is, the higher the liice on the graph, the stronger the
rock type.) As is evident from figure 7, in both the irregular and disc
specimens groups of lines, some of the lines cross because the exponent
b (or n) eventually "overrides" the intercept a (or K).
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CONCLUSIONS AND RECOMMENDATIONS
The following conclusions can be drawn:

1. The impact pendulum rock fragmentation device proved to be a valuable
tool in obtaining fragment data and energy-fragment size relationships.

2. The rock properties tested are not consistent from rock type to rock
type. '

3. No relationship could bé established between specific energy or
fragment distribution and number and size of cracks.,

4., Drop test sieve distributions can be represented by composite normal
distributions.

5. Impact pendulum test sieve distributions can be represented by normal
distributions. '

6. For the impact tests, specific crushing energy versus mean product
size (for a given initial specimen or feed size) can be well represented
by a power law or Charles' law. The exponents of the power law for the
different rock types and shapes were generally larger than expected, com-
pared to earlier experimental results reported in the literature.

7. The exponent of the power law appears to be the controlling factor
for the higher specific energies, i.e., for higher specific energies,
the larger the exponent the stronger the rock.

The following recoumendations are made:

1. Some additional impact pendulum tests at slightly higher input energy
(and hence higher crushing energy) levels should be run using the same
rock types. Perhaps up to twice the maximum energy used in the current
series could be used. (Excessive energy levels would eventually change
the breakage process into some sort of grinding process, which would no
longer be an approximation of a single event breakage.)

2. More extensive property determinations tests should be run, using the
same three rock types.

3. Another rock type could be run if a suitably stronger and harder
monomineralic rock could be found.

4. TFurther research and thought need to be devoted to other possible
interpretations of the data analysis.
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tl Table Al - Breakage matrix elements, b

APPENDIX A--BREAKAGE MATRIX ELEMENTS

(-3.5 + 3.0 in) Wausau quar%zite specimens.

, (not smoothed) for irregular

b

-i=1,2,nnc

21

Sieve

size Input energy Input energy Input energy

in = 164 ft-1b = 293 ft-1b = 455 ft-1b
-3.50 + 3.00 C.1374 0.0573 0.0679
-3.00 + 2.50 .2170 <1417 .0578
-2.50 + 2.12 .0933 .1246 0675
<2.12 + 1.75 .1935 .1416 . 1404
-1,75 + 1.50 .0816 .0879 .0910
-1,50 + 1.25 .0783 .0949 .1001
-1,25 + 1.05 .0501 .0703 .0876
-1.050 + 0.875 .0286 .0707 .0631
-0.875 + 0.742 .0172 .0329 .0416
-0.742 + 0.625 .0175 .0285 .0455
-0.625 + 0.525 .0150 .0210 .0372
-0.5250 + 0.4375 .0156 .0224 <0296
-0.4375 + 0.3750 .0074 .0154 .0221
-0.3750 + 0.3125 .0060 .0111 .0184
-0.3125 + 0.2630 .0056 .0102 .0150
-0.2630 + 0.2210 .0050 .0092 .0145
-0.2210 + 0.1850 .0034 .0059 .0103
-0.1850 + 0.1560 .0027 .0054 .0088
-0.1560 + 0.1310 .0025 .0054 .0088
-0.1310 + 0,.1100 .0024 .0042 .0073
-0.1100 + 0.0930 .0019 .0037 .0063

SUM .9820 .9643 . 9408
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(-3.5 + 3.0 in) Anorthosite specimens.

Table A2 - Breakage matrix elements, b,, (not smoothed) for irregular

Sieve bi -i=1,2, ..., 21

size Input energy Input energy Input energy

in = 164 ft-1b = 293 ft-1b = 455 ft-1b
-3.50 + 3.00 ‘0.2521 0.1306 0.0343
-3.00 + 2.50 .2852 .3194 .1031
-2,50 + 2,12 .2148 .1458 .1100
-2.12 + 1.75 .1071 .1082 .2210
-1.75 + 1.50 .0258 .0751 .0984
-1,50 + 1,25 .0378 .0529 .0887
-1.25 + 1.05 .0107 .0374 .0560
-1.050 + 0.875 .0167 .0299 .0542
-0.875 + 0,742 .0065 .0141 .0325
-0.742 + 0,625 .0067 .0147 .0349
-0.625 + 0.525 .0049 .0097 .0245
-0.5250 + 0.4375 . 0060 .0095 .0234
-0.4375 + 0.,3750 .0026 .0076 .0151
-0.3750 + 0.3125 .0035 .0065 .0132
-0.3125 + 0.2630 .0026 .0050 .0110
-0.2630 + 0,2210 .0023 .0042 .0103
-0.2210 + 0.1850 .0016 .0030 .0072
-0.1850 + 0,1560 .0015 .0028 .0065
-0.1560 + 0.1310 .0013 .0027 .0062
-0.1310 + 0,1100 .0012 .0025 .0058
-0.1100 + 0.0930 .0010 .0020 .00438

SuM .9919 .9836 .9611

Je
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(-3.5 + 3.0 in) Felch marble specimens

Table A3 - Breakage matrix elements, b,, (not smoothed) for irregular

a b, -41i=1,2, ..., 21

Sieve i

size Input energy Input energy Input energy

in = 164 ft-1b = 293 ft-1b = 455 ft-1b
-3.50 + 3.00 '0.1770 0.1439 0.0269
-3.00 + 2,50 .1826 .1282 .0814
-2.50 + 2,12 .2589 1411 .1384
-2,12 + 1,75 .1730 .1824 .1803
-1.75 + 1,50 .0566 .0801 .1219
-1.50 + 1,25 0449 .0918 .1016
-1.25 + 1,05 .0295 .0408 .0755
-1.050 + 0.875 .0166 .0536 . 0606
-0.875 + 0.742 .0081 .0195 .0339
-0.742 + 0.625 .0102 .0224 .0372
-0.625 + 0.525 .0102 .0167 .0213
~0.5250 + 0.4375 .0050 .0139 .0203
~0.4375 + 0.3750 .0042 .0108 .0156
-0.3750 + 0.3125 .0034 .0070 .0113
-0.3125 + 0.2630 .0031 .0063 .0102
-0.2630 + 0.2210 .0022 .0058 .0088
-0.2210 + 0,1850 .0016 .0035 .0057
-0.1850 + 0.1560 .0014 .0035 .0052
-0.1560 + 0.1310 .J012 .0033 .0049
-0.1310 + 0.1100 .0010 .0028 .0041
~0.1100 + 0.0930 .0009 .0021 .0033

SUM .9916 .9795 .9684
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Table A4 - Breakage matrix elements, b,, (not smoothed).for disc-shaped

(-2.12 + 1.75 in) Wausau quartzite specimens

b, - 1=

i

1, 2, . « . , 18

Input energy
= 164 ft-1b

Input energy
= 223 ft-1b

Input erergy
= 293 ft-1b

Inﬁut energy
= 365 ft-1b

Input energy
= 455 ft-1b

-1.050 + 0.875
«0.875 + 0.742
~0.742 + 0.625
-0.625 + 0.525
~0.5250 + 0.4375
~0.4375 + 0.3750
-0.3750 + 0.3125
~0.3125 + 0.2630

-0.2630 + 0.2210

~0.2210 + 0.1850
-0.1850 + 0.1560
-0,1560 + 0.1310
~0.1310 + 0.1100
~0.1100 + 0.0930

0.0000
.0000
.0000
.0506
.0643
.0489
.0195
.0391
.0245
.0217
.0181

.0150
.0i94
.0135
- .0108
.N09%%

.0204

0.0000
.0000
.0000
.0477
.2609
.1087
.0752
.0581
.0465
.0463
.0422
.0317
.0278
.0182
.0194
.0201
.0171
.0140

0.0000
.0000
.0000
.0000
1312
.0401
<1225
.1072
.0835
.0542
L0474
.0296
.0383
.0305
.0241
.0281
.0212
.0180

0.0000
.0000
.0000
.0000
.0373
.0396
1114
.0923
.0896
.0785
.0697
.0528
.0505
.0302
.0297
.0273
.0253
.0215

0.0000
.0000
.0000
.0000
.0265
.0104
.0250
L0614
.0581
.0612
.0656
.0673
.0567
.0454
.0422
.0410
.0359
.0327

SUM

. .8804 -

.8339

.7759
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Table A5 - Breakage matrix elements,

b
(-2.12 + 1,75 in) anorthosi%e specimens

, (not smoothed) for disc-shaped

b, -1=1, 2, ..., 18

Sieve . i

size Input energy |Input energy |Input energy Input energy | Input energy

in = 164 ft-1b | = 223 ft-1b | = 293 ft-1b | = 365 ft-1b | = 455 ft-1b
-2.12 + 1.75 0.0000 0.0000 0.C000 0.0000 0.0000
-1.75 + 1,50 .0000 .0000 .0000 .0000 .0000
-1,50 + 1,25 .0000 .0000 .0000 .0000 .0000
-1.25 + 1.05 .0952 .0658. .0000 .0000 .0000
-1.050 + 0.875 .6126 4115 .2289 . 1595 .0324
-0.875 + 0.742 .0318 .0777 .0971 .0487 .0516
-0.742 + 0,625 .0200 .0598 .1589 .0891 .1452
-0.625 + 0.525 .0119 . 0504 .0615 1217 .0732
-0.5250 + 0.4375 .0228 .0356 .0696 .0565 .0937
-0.4375 + 0.3750 .0165 .0277 .0393 .0666 .0648
-0.3750 + 0.3125 .0209 .0329 .0389 .0497 .0694
-0.3125 + 0.2630 .0138 .0208 .0280 .0440 .0610
-0.2630 + 0.2210 .0162 .0253 .0340 .0378 .0530
-0.2210 + 0.1850 .0127 .0155 .0215 .0267 .0333
-0.1850 + 0.1560 .0115 .0171 .0209 .0280 .0343
-0.1560 + 0.1310 .0102 .0164 .0187 .0281 .0296
-0.1310 + 0.1100 -.0100 .0154 .0188 .0256 .0254
-0.1100 + 0.0930 .0086 .0124 .0154 .0209 .0223

SUM L9147 .8843 .8515 . 8029 .7892
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Table A6 - Breakags matrix elements, b, (not smoothed) for disc-shaped 1
l (-2.12 + 1,75 in) Felch mar%le specimens é
i : .
il Sieve b1 -1i=1,2,...,18
Lo . size Tnput energy | Input energy | Input energy |Input energy Input energy
in = 164 ft-1b | = 223 ft-lb | = 293 ft-1b | = 365 ft-1b | = 455 ft-1b
i -2.12 + 1.75 0.00C0 0.0000 0.0000 0.0000 0.0000
; -1.75 + 1,50 .0000 .0000 .0000 .0000 .0000
] -1.50 + '1.25 .0000 . .0000 . .0000 : .0000 .0000
; -1.25 + 1.05 ~.0000 .0000 .0000 .0000 .0000
4i =1,050 + 0.873 4954 .3069 .1378 .0684 .0257
: -0.875 + 0.742 .0938 .0886 .1152 .0360 J .0830
i -0.742 + 0.625 .0858 .1256 .1008 .1258 .0689
| =0.625 + 0.525 .0411 .0737 .1106 .1205 .0882
7 -0.5250 + 0.4375 0412 .0528 .0811 .0967 .0787
. =0.4375 + 0.3750 .0312 .0565 .0667 .0733 .0882
i -0.3750 + 0.3125 .0330 0645 .0428 .0514 .0694
¢ =-0.3125 + 0.2630 .0218 .0297 .0437 .0510 .0697
-0.2630 + 0.2210 .0210 .0297 .0369 .0498 .0528
'] -0.2210 + 0.1850 .0136 .0204 .0241 .0305 .0391
4 =0.1850 + 0.1560 .0107 .0175 .0234 .0275 .0342
-0.1560 + 0.1310 .0125 .0158 .0226 .0274 .0323
= § i” -0.1310 + 0.1100 .0098 .0137 .0204 .0235 .0281
f : 1[ -0.1100 + 0.0930 .0086 .0120 .0166 .0201 .0224
EE SUM - 9195 .8874 .8427 .8019 .7807 ]
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APPENDIX C--COMPARISON OF VARIOUS DISTRIBUTION FUNCTION FITS

Table C-1. - Comparison of various distribution function fits - Wausau
. quartzite, irreguler shape

Line: Y = A + BX Correlation Coefficient
Distribution Intercept Slope of
coefficient . ]
A B determination
WAUSAU QUARTZITE-HEIGHT A, IRREGULAR SHAPE, 30 TESTS
Negative exponential.. 0.000 -0.739 -0.977 0.899
Log WEibull........... _20423 1.338 0.968 0.965
WEib011............... _0.569 1.075 0.983 0.972
POWEr CUTVEeessososans -0.967 0.843 0.966 0.988
Log.normal....ccceevsea -0.034 0.807 0.949 0.928
Normall.ooooooooooo-oo _10480 1.067 0-994 0.993
WAUSAU QUARTZITE-HEIGHT B, IRREGULAR SHAPE, 30 TESTS
Negative exponential.. 0.000 -0.620 -0.930 0.785
Log Weibull....cceeens -3.007 1.492 0.979 0.977
WEibu1l............... -0.955 1.176 0.975 0.949
PoWwer CUXVE.cecossssse -1.274 0.977 0.991 0.968
Log normal.,cceeeeeense -0.317 0.809 0.928 0.900
Normal....’........l.. "1.790 1.097 00997 0.997
WAUSAU QUARTZITE-HEIGF! C, IRREGULAR SHAPE, 30 TESTS
Negative exponential.. 0.000 -0.406 -0.907 7,739
LOg WEibu1l........... -3.717 1.602 0.984 0.978
WEibU11............... _10522 1.249 0.969 0.881
Power CUXVEessosovescee "'1.736 1.111 0.983 0.890
LOg normaloooooooooooo _0.715 0.755 0.921 0.838
Normal................ "2.098 1-033 0.997 00996
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j Table C-2 -~ Comgarison of various distribution function fits - anarthosite,
rregular shape :

1 ? i Line: Y = A + BX Correlation Coefficient

- Distribution Intercept Slope coefficient of

4 2 A B determination

v B ANORTHOSITE-HEIGHT A, IRREGULAR SHAPE, 30 TESTS

- Negative exponential.. |  0.000 T ~0.721 ~0.919 0.711

. . 11 Log Weibull........e.. ~2.892 1.490 0.983 0.989

E § {i Weibull...eeeeeeoseens -0.849 1.164 0.970 0.937

3 % PoOWer CUTVE.eeesscssss -1.206 0.941 0.992 © 0,959
[ 17 Lognormal.e.eeescenes -0.222 0.833 0.915 0.880

] P 0, Normal....ceeeeeecenne -1.753 1.146 0.996 0.993

R s

ANORTHOSITE-HEIGHT B, IRREGULAR SHAPE, 30 TESTS

. | 1. Negative exponential.. 0.000 -0.358 -0.856 0.669
k| Log Weibull,.eeevuoees -3.798 1.542 0.986 0.982
L1 Wedbulli....eeaeeeaen. -1.693 1.191 0.962 0.818
E 1 POWEY CUTVE.eosesocnoss -1.878 1.071 - 0,980 0.819
- Log nOYMale.sssesccnss -0.833 0.702 0.905 0.778
- L Normal.......oeecnennn -2.128 0.971 0.991 0.979
E £ 5 -
§ L ANORTHOSITE-HEIGHT C, IRREGULAR SHAPE, 30 TESTS
; Negative exponential.. 0.000 -0.233 -0.824 0.59¢
' Log Weibull...veseuees -4 . 545 1.630 . 0.991 0.996
“* Wedbull.veeoseassosons -2,336 1.233 0.947 0.639
~ Power curve...sececess -2.456 1.152 0.962 0.623
|| Log normal...ecececese -1.208 0.648 0.885 0.625
L) Normal...coecscasssocs -2.418 0.913 0.987 0.961




Table C-3 - Comparison of various distribution function fits - Felch marble,
irregular shape

Line: Y = A 4+ BX Correlation Coefficient
Distribution Intercept Slope of

A B coefficient determination

FELCH MARBLE-HEIGHT A, IRREGULAR SHAPE, PO TESTS

Negative exponential.. 0.000 =0.76 -0.912 0.652
Log Weibull...eveveess -3.138 1.63 0.983 0.987
Welbull,seeeeenvoonnas -0.900 1.276 0.970 0.946
Power curve....eeeeees -1.269 1.03 0.990 0.962
Log normal..cveveveeees -0,232 0.90 0.915 0.888
NorTmal.vseseoosoooasnes -1.888 1.24 0.998 0.997

FELCH MARBLE-HEIGHT B, IRREGULAR SHAPE, 30 TESTS

Negative exponential.. 0.000 -0.442 -0.931
Log Weibull...vevsuuse -3.561 1.590 0.980
HeXBUdd... a6k io b lrersrarerndta. s -1.375 1.251 0.973
Power curve...cevsvess -1.610 1.100 0.987
Log normal...eeveesses -0.618 0.775 0.930
Normal.eeeeeeeeennsosns -2.029 1.050 0.998

FELCH MARBLE-HEIGHT C, IRREGULAR SHAPE, 30 TESTS

Negative exponential.. 0.000 -0.324 -0.852
Log Weibull..evveevees -4,565 1.816 0.991
Weibull....cooeeevnsnnn -2.097 1.385 0.954
Power curve...eveeeces -2.261 1.272 0.970
Log normal..cceceeceees -1.040 0.758 ~0.895
NOoTmal.eeeevsevsosanss -2.453 1.064 0.994
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Table C-4 - Comparison of various distribution function fits - Wausau
quartzite, disc shape

Line: Y = A + BX Correlation Coefficient
Distribution Intercept Slope coefficient of
A B determination
WAUSAU QUARTZITE-HEIGHT A, DISC SHAPE, 10 TESTS
Negative exponential.. 0.000 -4,175 -0.998 0.982
LOg WEibUll........-.. —0.821 2.750 0.979 0.972
Weibull.ioeveeeennones 1.368 0.957 0.992 0.986
POWEYr CUIVE.eseooscsasse 0.131 0.462 0.993 0.974
Log normal.....cceevee’ 1.887 1.034 0.978 0.951
Normalooooo-oo-oooo-oo —00510 3.058 0.992 0.992
WAUSAU QUARTZITE-HEIGHT 1, DISC SHAPE, 10 TESTS
Negative exponential.. 0.000 -3.018 -0.978
Log WEibU].l..n..-..... —10458 3.170 0.997
Wedbull...cieeveennnse 1.016 1.064 0.974
PoWer CULVEe.:esssossss 0.060 0.643 0.996
Log normal...ceeeseces 1.404 1.015 0.944
Nom‘al.-.-.--......... —00994 3.125 0-998
WAUSAU QUARTZITE-HEIGHT B, DISC SHAPE, 10 TESTS
Negative exponential.. 0.000 -2.089 -0.990
Log WEibU].l....l,...-.. _10503 2.684 0.995
weibull............... 0.595 0.903 0-97[‘
Power CUYVEs oo oecoeaossss —00098 0.615 0.993
Log nomal............ 0.902 0.790 00951
NOrmal................ —00957 2.411 0-997
WAUSAU QUARTZITE-HEIGHT 2, DISC SHAPE, 10 TESTS
Negative exponential.. 0.000 -1.728 -0.914
Log Weibull......co0u -1.836 2.539 0.987
Weibull.eeeoooeessnnsns 0.285 0.934 0.942
POWEI' CUI'VE........_... —0.311 0.663 0-987
Log normal....ccoveeee | 0.632 0.789 0.884
Normallooooooooooooooo —1.19[‘ 2.233 0-96[‘
WAUSAU QUARTZITE-HEIGHT C, DISC SHAPE! 10 TESTS
Negative exponential.. 0.000 -1.327 -0.803
Log WEibU].l........... —2.2[‘[‘ 2.483 0.9[‘1
Weibull............... —00203 0.885 0.870
POWEY CUTVE..coossossse . =0.653 0.670 0.946
Log normal....cccovees 0.209 0.695 0.780
Normal.ooooooooooooooo —1.432 2-0[‘6 0.885
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Table C-5 - Com?arison of various distribution function fits - anorthosite,
(84

isc shape
Line: Y = A 4+ BX Coefficient
Distribution Intercept Slope Sgr§§1a§i°: of
A B etticien determination

ANORTHOSITE-HEIGHT A, DISC SHAPE, 10 TESTS
Negative exponerntial.. 0.000 =-2.942 -0.967 0.858
LOg weibull........... "'1.600 3.337 0.995 0.992
Weibull ssesvocvsseses 1.012 1.125 0.977 0.968
Power CUrVe.seseoonsss 0.074 0.703 0.998 0.996
Log normal...cececeses 1.384 1.051 0.943 0.922
Novrmal..eeoeeeoencesnas =1.096 3.230 0.99¢ 0.994

ANORTHOSITE-HEIGHT 1, DISC SHAPE, 10 TESTS
Negative exponential.. 0.000 -1.945 -0.995 0.971
Log Weibull...eooenues -1.582 2.719 0.989 0.985
Welbull; ;s 5 s s1smmesE oon 0.564 0.931 0.986 0.973
Power CUTVe.ceeseeeses -0.092 0.657 0.997 0.992
Log normal....cco0eese 0.848 0.790 0.968 0.946
Nomal................ -00996 2.370 0.997 0.996

ANORTHOSITE-HEIGHT B, DISC SHAPE, 10 TESTS
Negative exponential.. 0.000 -1.395 -0.986 0.941
Log Weibull..coeeons -1.931 2.711 0.994 0.992
Weibull..eeoeoeacesoas 0.191 0.914 0.976 0.942
Power CUrVe.ceeeoconas -0.293 0.708 0.991 0.964
Log normal....cceo000e. 0.464 0.707 0.951 0.912
Norma]............-.... '1.199 2.155 0.996 00992

ANORTHOSITE-HEIGHT 2, wv.. ~ SHAPE, 10 Tr"STS )
Negative exponential.. 0.000 -1,351 -0.359 0.644
LOg weibull........... -2.202 2.595 0.970 0.929
weibull............... -0-040 00949 0.”20 0.816
Power CUrvVe.ceeseeeses -0.513 0.726 0.974 0.831
Log normal....eoeueues 0.321 0.739 0.847 0.772
Normal................ -1-400 2.115 00934 0.889

ANORTHOSITE-HEIGHT C, DISC SHAPE, 10 TESTS
Negative exponential.. 0.C00 -0.990 -0.772 0.364
Log Weibull........... -2.549 2.414 0.911 v.769
weibl.l].]..........;..... -0.562 0.862 0.845 0.569
Power CUY Ve, ecososessssse -00909 0.695 0.914 00547
ng normal............ -0.097 0.625 0.753 0.554
Normal--o-oo-ooo--oooo -10574 1-839 0.853 0.719
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Table C-6 - Comparison of various distribution function fits - Felch marble,

=
-

disc shape
Line: Y = A + BX Correlation Coefficient
Distribution Intercept Slope coefficient of
A B determination
FELCH MARBLE-HEIGHT A, DISC SHAPE, 10 TESTS
Negative exponential.. 0.000 -3.082 -0.971 0.885
Log Weibull...ceeeeens -1.531 3.323 0.992 0.987
Weibull,.ooveenooonnns 1.082 1.130 0.983 0.980
POWET CULVE.seososcccs 0.105 0.695 0.998 0.995
Log normal...ceeceneen 1.463 1.068 0.953 0.939
Normal................ —10049 30256 00997 00998
FELCH MARBLE-HEIGIUT 1, DISC SHAPE, 10 TESTS
Negative exponential.. 0.000 -2.540 -0.977 0.885
Log Weibull..oceeenees -1.674 3.242 0.¢95 0.995
Wedbull.oeeoeecenoaass 0.862 1.092 0.976 0.962
POWEr CUIVE.sesocsssss 0.026 0.718 0.996 0.989
Log normal.cecece oons 1.194 0.981 0.948 0.919
Noxmal.seeesoooscosros -1.117 3.005 0.997 0.996
FELCH MARBLE-HEIGHT B, DISC SHAPE, 10 TESTS
Negative exponentizl.. 0.000 -1.790 -0.981 0.926
Log Weibull...coeeones -1,897 3.050 0.995 0.994
Weibull.oeveocosoannns 0.492 1.030 0.979 0.961
POWEr CULVE.ss . cossoss -0.123 0.758 0.994 0.985
Log normal...eceoscacs 0.764 0.840 0.953 0.927
Normal..eeoeecocoacccs -1,211 2.561 0.998 0.998
FELCH MARBLE-HEIGHT 2, DISC SUAPE, 10 TESTS
Negative exponential.. 0.000 -1.154 -0.990 0.957
Log Weibull....ceovenee -2,231 2.910 0.992 0.986
Wedbull..eeveeonnaceoe 0.060 0.992 0.984 0.963
POWEY CUFVE.s oo eossscs -0.354 0.811 0.993 0.980
Log normal..cececoveee - 0.315 0.718 0.966 0.937
Normal..ccooecocscrcncns -1.363 n.161 0.998 0.997
FELCH MARBLE-HEIGHT C, DISC SHAPE, 10 TESTS
Negative exponential.. 0.000 -0.704 -0.994 0.973
Log Weibull....coeveen -0.549 2.641 0.990 0.981
Weibull...ioeeesoncces -0.463 0.905 0 987 0.960
POWETr CUILVE.eososassse . -0.719 0.797 0.992 0.971
Log normal...cccececce v -0.139 0.584 0.973 0.938
Normaloooo e 0000 00 00 00 -10499 10742 00997 00995
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